

# Fast Multi-Channel Photonics Alignment System

System with 6 Degrees of Freedom for Aligning Fibers and Optical Components



## F-712.HU1

- Integrated scan routines for fiber optic alignment
- Ideal for applications in silicon photonics
- Extensive software package
- Position sensors for high accuracy and operational reliability
- Automatic alignment of several fibers in <0.2s</li>
- Freely selectable virtual pivot point

### Fast and high-precision drives

The basis of the fiber alignment system is a very stiff setup with an H-811 hexapod and an P-616 NanoCube® nanopositioner. The parallel-kinematic design for motion in six degrees of freedom ensures high system stiffness. The motorized drives make long travel ranges possible and at the same time, the NanoCube® nanopositioner allows fast scanning motion and dynamic compensation of drift effects. Flexure guides and all-ceramic PICMA® actuators guarantee a long lifetime. Because all drives are equipped with position sensors, the system works precisely and reliably with high repeatability.

#### **High-performance scan routines**

The sophisticated scan routines are integrated directly into the controller, which considerably improves the performance and simplifies integration. The system can manage all tasks in the field of fiber alignment. The integrated rotational scans enable fiber arrays to be optimized on all channels very easily.

### **Extensive software package**

The software package supplied in the scope of delivery allows integration of the system into virtually any environment. All common operating systems such as Windows, Linux, and macOS as well as a large number of common programming languages including MATLAB and NI LabVIEW are supported. Thanks to sophisticated program examples and the use of software tools such as PIMikroMove, the time between starting integrating and productive operation is shortened considerably.

#### High-resolution analog input

The controller receives the optical intensity signal directly via a high-resolution analog input. Complex setups with cameras are not necessary. Various distribution functions are available for determining the maximum intensity.

#### **Application fields**

Alignment of optical components and parts, assembling technology in silicon photonics, packaging.



# **Specifications**

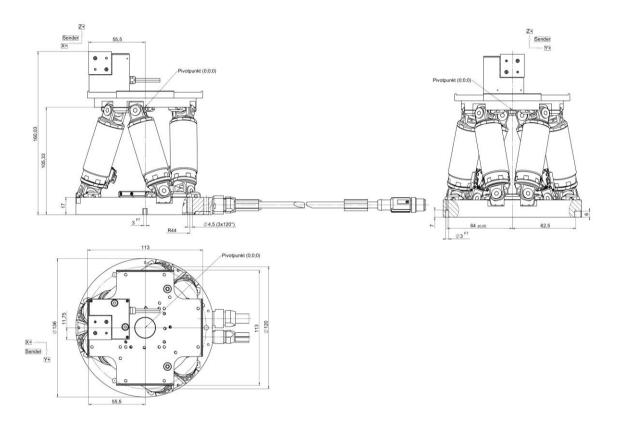
| Motion and positioning                                                                                | F-712.HU1                               | Unit |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------|------|
| Number of active axes                                                                                 | 9                                       |      |
| Rough positioning                                                                                     |                                         |      |
| Active axes                                                                                           | $X, Y, Z, \theta_x, \theta_y, \theta_z$ |      |
| Travel range in X, Y, Z                                                                               | ±17, ±16, ±6.5*                         | mm   |
| Travel range in $\theta_X,\theta_Y,\theta_Z$                                                          | ±10, ±10, ±21*                          | 0    |
| Minimum incremental motion in X, Y                                                                    | 0.1                                     | μm   |
| Minimum incremental motion in Z                                                                       | 0.05                                    | μm   |
| Max. velocity                                                                                         | 10                                      | mm/s |
| Sensor type                                                                                           | Incremental rotary encoder              |      |
| Drive type                                                                                            | Brushless DC motor                      |      |
| Fine positioning                                                                                      |                                         |      |
| Active axes                                                                                           | X, Y, Z                                 |      |
| Travel range in X, Y, Z, closed loop                                                                  | 100                                     | μm   |
| Min. incremental motion, open-loop                                                                    | 0.3                                     | nm   |
| Min. incremental motion, closed-loop                                                                  | 2.5                                     | nm   |
| Linearity error, for the entire travel range**                                                        | 2                                       | %    |
| Repeatability (bidirectional) 10% travel range                                                        | 2                                       | nm   |
| Sensor type                                                                                           | Incremental linear encoder              |      |
| Drive type                                                                                            | PICMA®                                  |      |
| Alignment                                                                                             |                                         |      |
| Scanning time of spiraled area scan 500 $\mu$ m Ø***                                                  | <2                                      | S    |
| Scanning time of spiraled area scan 100 $\mu$ m Ø***                                                  | <0.3                                    | s    |
| Scanning time of spiraled area scan 10 μm Ø***                                                        | <0.2                                    | S    |
| Signal optimization with gradient search, randomized with $\pm 5~\mu m$ (repeatability < 0.01 dB)**** | <0.3                                    | S    |

| Miscellaneous                           | F-712.HU1 | Unit |
|-----------------------------------------|-----------|------|
| Operating temperature range, mechanics  | 0 to 50   | °C   |
| Operating temperature range, controller | 5 to 40   | °C   |
| Cable length                            | 2         | m    |

|                            | Requirements for the optical power meter                    | Unit |
|----------------------------|-------------------------------------------------------------|------|
| Output signal              | Analog output, ideally converted from linear to logarithmic |      |
| Output voltage range, max. | -5 to 5                                                     | V    |
| Bandwidth, min.            | 1                                                           | kHz  |
| Noise level, max.          | -60                                                         | dBm  |



Technical data specified at 20±3 °C.


\* The travel ranges of the individual coordinates  $(X, Y, Z, \theta_X, \theta_Y, \theta_Z)$  are interdependent. The data for each axis in this table shows its maximum travel range, where all other axes and the pivot point are at the reference position.

See the dimensional drawings for the default coordinate system and pivot point coordinates of the hexapod. Changing the pivot point will reduce the travel range in  $\theta_X$ ,  $\theta_Y$ ,  $\theta_Z$ . Changing the orientation of the coordinate system (e.g., when the optical axis is to be the Z axis), will change the travel range in X, Y, and  $\theta_Z$ 

- \*\* without polynomial linearization
- \*\*\* typical time span for scanning the entire area and moving to the highest intensity
- \*\*\*\* reaching the global maximum after first light has been found

Ask about customized versions.

# **Drawings / Images**



F-712.HU1, dimensions in mm

## **Ordering Information**

#### F-712.HU1

Single-sided Fiber alignment system with H-811 hexapod and NanoCube® Nanopositioner, upright configuration, E-712 digital controller with 4 analog inputs, C-887 hexapod motion controller with 2 analog inputs, firmware routines for extremely fast alignment functions, software package